Fast Matrix Multiplication with Big Sparse Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast sparse matrix multiplication on GPU

Sparse matrix multiplication is an important algorithm in a wide variety of problems, including graph algorithms, simulations and linear solving to name a few. Yet, there are but a few works related to acceleration of sparse matrix multiplication on a GPU. We present a fast, novel algorithm for sparse matrix multiplication, outperforming the previous algorithm on GPU up to 3× and CPU up to 30×....

متن کامل

Data Distributions for Sparse Matrix Vector Multiplication

Sparse matrix vector multiplication (SpMxV) is often one of the core components of many scientific applications. Many authors have proposed methods for its data distribution in distributed memory multiprocessors. We can classify these into four groups: Scatter, D-Way Strip, Recursive and Miscellaneous. In this work we propose a new method (Multiple Recursive Decomposition (MRD)), which partitio...

متن کامل

Coded Sparse Matrix Multiplication

In a large-scale and distributed matrix multiplication problem C = AB, where C ∈ Rr×t, the coded computation plays an important role to effectively deal with “stragglers” (distributed computations that may get delayed due to few slow or faulty processors). However, existing coded schemes could destroy the significant sparsity that exists in large-scale machine learning problems, and could resul...

متن کامل

Fast Sparse Matrix-Vector Multiplication by Exploiting Variable Block Structure

We improve the performance of sparse matrix-vector multiply (SpMV) on modern cache-based superscalar machines when the matrix structure consists of multiple, irregularly aligned rectangular blocks. Matrices from finite element modeling applications often have this kind of structure. Our technique splits the matrix, A, into a sum, A1 + A2 + . . . + As, where each term is stored in a new data str...

متن کامل

Towards a fast parallel sparse matrix-vector multiplication

The sparse matrix-vector product is an important computational kernel that runs ineffectively on many computers with super-scalar RISC processors. In this paper we analyse the performance of the sparse matrix-vector product with symmetric matrices originating from the FEM and describe techniques that lead to a fast implementation. It is shown how these optimisations can be incorporated into an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cybernetics and Information Technologies

سال: 2017

ISSN: 1314-4081

DOI: 10.1515/cait-2017-0002